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An earlier discussion of the use of statistical significance tests in the comparison of experimental 
and theoretical determinations of molecular structures is extended, and the application of multi- 
variate tests is shown. The accuracy of atomic coordinates determined by Fourier or least-squares 
methods, irrespective of whether the peaks overlap or not, is discussed in detail. Formulae are given 
for the errors of molecular parameters in terms of the errors of the atomic parameters of the crystal 
structure. The methods are applied in a discussion of the latest results on naphthalene and anthra- 
cene, and it is shown that while it is hardly necessary to postulate any errors in the molecular- 
orbital theory for anthracene, there are very significant discrepancies for naphthalene. 

1. In troduct ion  

In X-ray crystallography, when a molecular* structure 
has been determined from a set of experimental data, 
it is often of great interest to decide whether or not 
it is in agreement with some theoretical structure. In 
general the two sets of molecular parameters will be 
different and the crystallographer will have to decide 
whether the differences are small enough to have 
arisen quite easily from errors in the experimental 
determination, or whether they are so large as to rule 
out this possibility. Similar problems arise in  the 
comparison of different experimental determinations 
of the same molecular structure or of similar chemical 
groupings. The purpose of this paper is to indicate 
what sort of an answer can be given to these questions. 

I t  is contended that  comparisons of two structures 
should be made by statistical significance tests based 
on proper estimates of the accuracy of the results. 
This has already been advocated by Cox & Cruickshank 
(1948) and Cruickshank (1949a); but these discussions 
presented only an incomplete account of significance 
tests for the comparison of single parameters (e.g. 
the comparison of an experimentally determined bond 
length with a theoretical value). A fuller discussion 
of one-parameter significance tests is given in § 2 of 
this paper, and in § 3 the methods are extended to 
cover the simultaneous comparison of any number of 
parameters, thus making possible the comparison of 
structures as wholes. These two sections are largely 
the formulation of standard statistical procedures (see 
e.g. Kendall 1943, 1946) in the crystallographic situa- 

* The word  molecular  is used as a convenient  w a y  of 
designat ing the  pa r t  of the  crysta l lographic  s t ruc ture  which is 
of interest ,  irrespective of the  fac t  t h a t  the  word m a y  n o t  
always  be correct in the  chemical  sense. 

tion. Naturally the difference between experimental 
and theoretical results is often so large as to render 
unnecessary the use of the formal apparatus of 
significance tests, but in those cases where, roughly 
speaking, the differences are of the order of magnitude 
of the errors significance tests are the only objective 
method of comparison. 

Correction of systematic errors (particularly the 
finite-series effect) and estimation of the accuracy of 
the results are a necessary preliminary to the applica- 
tion of significance tests. The two papers above, 
following Booth (1945, 1946), give a discussion of this 
problem which is valid for atomic coordinates deter- 
mined by the Fourier method when the peaks do not 
overlap. Cruickshank (1952) has introduced the modi- 
fied differential Fourier method as a general means of 
determining atomic coordinates, which is valid whether 
the peaks overlap or not. When there is no overlapping 
and certain other conditions are satisfied, the usual 
Fourier method with back corrections by Booth's 
method (1945, 1946) approximates to the modified 
differential Fourier method. The estimation of the 
accuracy of results found by this general method is 
discussed in § 4. The method has formal similarities 
with Hughes's (1941) application of the least-squares 
method, for which the estimated errors can be derived 
by standard formulae. A comparison of the accuracies 
of the two methods is made in § 4. This part of the 
discussion is a more general form of that  given earlier 
by Cruickshank (1949b), which was valid only for 
non-overlapping peaks. 

A distinction must be made between the crystallo- 
graphic structure parameters and the molecular para- 
meters. First, the molecular parameters are bond 
lengths and angles, and not the positions of atoms in 
the unit cell. Secondly, a molecular parameter may 
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be estimated from more than one set of crystallo- 
graphic parameters, because the assumed symmetry 
of the free molecule may be higher than its crystallo- 
graphic symmetry. § 4 is concerned with discussing 
the errors of the crystallographic structure parameters, 
and § 5 is concerned with expressing the errors of the 
molecular parameters in terms of the former. 

As examples, in § 6 the preceding theory is applied 
to recent investigations on naphthalene and anthra- 
cene. 

2. O n e - p a r a m e t e r  significance tests  

This section summarises the tests for comparison with 
respect to one parameter. By introducing the statistical 
notions, it lays the foundation for subsequent gener- 
alization to more than one parameter. For definiteness 
we suppose that  the one parameter is the length of 
a particular bond. 

The experimental estimate 1 of the (unknown) true 
bond length is obtained by interpretation of the ob- 
served reflexion intensities, l differs by 'errors' from 
the unknown 2. The fundamental supposition (com- 
mon to all metrical science) about the 'errors' is that  
for a given experimental procedure (understanding by 
this both the experimental arrangement and the 
interpretive process) l is a random variable with a 
probability distinction, i.e. there is a probability 
density function f(1) such that  f (1)dl  is the probability 
that  the experimental estimate of 2 lies in the range 

1 to l+dl .  (Since 1 must have some value I~ f (1)d l  1.) 
~ U  

Like ~, f(1) is unknown, but, from general considera- 
tions of the experimental procedure, reasons will be 
given in § 4 for supposing, when certain systematic 
errors have been corrected, that  1 is distributed nor- 
mally about 2 with unknown standard deviation a; 
thus 

1 (2.1) f(1) - (2~a2) ½exp 2a 2 / " 

:By the methods discussed in §§ 4 and 5 an estimate 
s of a can be made. When the number v of degrees 
of freedom on which this estimate is based is large 
(say v > 30) s may be treated as a moderately accurate 
estimate of a, and so to a high degree of approximation 
l is distributed normally about mean 2 with standard 
deviation s, i.e. t = ( 1 - 2 ) / s  is a normal random 
variable with zero mean and unit standard deviation. 
(v is the difference between the number of crystallo- 
graphically independent planes observed and the 
number of independent parameters derived from the 
data.) In fact for all values of ~ the random variable 
t has 'Student's '  t distribution with v degrees of 
freedom: 

1 / '(1@+1)) 1 
f(t) - (~)½ F(I~) (1+t2/0+(~+1)' (2.2) 

_P(x) being the Gamma-function. This distribution 
tends to normality as ~ --~ oo. Because t involves only 

699 

the unknown 2, and not the unknown a, this distribu- 
tion forms the basis of the statistical significance test 
used to compare an experimental bond length with a 
theoretical value. 

Suppose the experimental data yield an estimated 
bond length lo, with estimated standard deviation So 
based on ~ degrees of freedom, and we wish to com- 
pare this with a theoretical value )~o. On the tentative 
hypothesis that  2o is the true value, 

to = (lo-2o)/So (2-3) 

is a value of a random variable t having a Student 
distribution with ~ degrees of freedom. From the 
tables of this distribution, the probability P that  
It] ~ ]to] can be found. If this is very small, it indicates 
that  the occurrence of the results lo and So on the 
tentative hypothesis is a rare and surprising event, 
and we are led to suspect, or even to reject, the hy- 
pothesis that  the experimental data come from a 
structure with true bond length 20. On the other hand 
if P is not small, we conclude that  the experimental 
data are not inconsistent with a value ~to for the bond 
length, though they do not provide evidence to prove 
that  2o is the correct value. When P is so small as to 
cast doubt upon the hypothesis, we say that  lo is 
significantly different from 20; just how small P has 
to be for this is arbitrary, and is a compromise between 
the danger of making a false judgment, which in- 
creases as we allow larger values of P to be significant, 
and the possibility of being unable to make any 
judgment, which increases as we restrict significance 
to smaller values of P. Most purposes are served by the 
following table: 

P > 0.05 = 5% 
0.05 > P > 0 . 0 1  = 1% 
0-01 > P > 0 - 0 0 1  = 0 - 1 %  
0.001 > P 

not significant, 
possibly significant, 
significant, 
highly significant. 

I t  is to be noted that  P is not the chance of some 
specified observation being made, e.g.if the experimen- 
tal and theoretical values of a bond length are 1.390 A 
and 1.410/~, and give P = 0.01, it is not implied that  
if the theory is correct the chance of observing 1.390/~ 
is 1 in 100. Strictly speaking, the chance of making 
some exactly specified observation is zero; though it is 
true that  if we are rounding off to the nearest 0.01 A, 
we may speak of the probability of observing 1.39 A, 
but the P values found by significance tests have 
nothing to do with this. 

The situation is that  we have to set up arbitrary 
and necessarily imperfect conventions for deciding 
whether to reject or retain a theory; the above signifi- 
cance tests provide us with a consistent and objective 
method of doing this. 

In many problems ~ > 30, and so to a high degree 
of approximation the t distribution may be treated 
as normal. In this case 
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/~.\ z~o/~)il0exp {--½t~'} d ' =  1--eft  (tdV2) . (2.4) P = I -  

The values of to at the various significance points are 
then  

P = 0.05 t o -- 1.960, 
P = 0.01 to -- 2.576, 
P - 0.001 to = 3.291. 

I t  is possible to compare two exper imenta l ly  deter- 
mined bond lengths and to test  the hypothesis  tha t  
the true lengths are the same. Let  the determinat ions 
be 11 and l~, with es t imated  s tandard  deviations s 1 on 
~1 degrees of freedom and s~ on v~ degrees of freedom. 
When  both ~1 and ~. are large the hypothesis  m a y  be 
tested on the normal  law by  taking 

t o = (11 - -~2) / (S21+82)  ½, (2"5) 

supposing the determinat ions to be independent .  When  
either or both of vl and v~ are small  the distr ibut ion 
is more complicated and is not  t abula ted ;  a discussion 
of the problem will be found in Kendal l  (1946, § 21). 

There is a difference between the above definit ion 
of P an d~ tha t  given by  Cruiekshank (1949a). In  the 
former definit ion P was defined as the probabi l i ty  
tha t  a bond length A could be observed as greater 
t han  another  bond length B by  at least 5l by  chance, 
a l though real ly  equal  to B. Corresponding to this on 
the present  definition, P is the probabi l i ty  tha t  the 
difference between A and B irrespective of sign could 
be observed as greater t han  6l. The present definit ion 
is to be preferred, as i t  .is in line with the usual  statis- 
t ical  practice, and  as the many-pa ramete r  definit ion 
given in the  next  section reduces to i t  for one para- 
meter.  An accidental  faul t  of the wording of the 
previous definition was tha t  the words ' by  at least 
5l' were unfor tunate ly  omitted. 

3. M a n y - p a r a m e t e r  s i g n i f i c a n c e  tests  

When  it  is desired to compare two structures with 
respect to several parameters  (e.g. atomic coordinates, 
bond lengths, angles between bonds) the one-para- 
meter  tests described in  the last  section can be applied 
to each parameter  separately,  bu t  i t  m a y  then  be 
difficult to interpret  the results if some parameters  
show significant differences and some not. As this  
method takes no account of possible correlations be- 
tween parameters,  i t  is preferable to use a test  which 

considers all parameters simultaneously. 
Suppose, then, we wish to consider the parameters  

xl, xg., . . . ,  x~, having (unknown) true values ~1, ~., 
. . . ,  ~ .  As in the one-parameter  case, we suppose 
tha t  the x~ are random variables normal ly  dis t r ibuted 
wi th  means  ~. In  general they  will be correlated, and 
their  joint  probabi l i ty  dis t r ibut ion will be the multi-  
var ia te  normal  form 

f = (2~)-½~(det cQ-½ exp {-½ ~ ~ cJ i (x r~ i ) (x~-~ i )} ,  
i=1 j=l  (3-1) 

where ~ = (~ij) is ghe var iance mat r ix  of the  xi, and  
~ - 1 =  (c~ij) is its inverse. The var iance ma t r i x  ~ of 
the x's is a generalization of the var iance (r ~ of l in 
the one-parameter  case; i t  is symmetr ic  and  its diago- 
nal  elements give the variances of the x's, and the  
other elements their  covariances. Thus 

c~ii ---- var  (xi) = a~i; ~ -- coy (xi, xj) ---- ~q(r~(rxj , 

where ~oi~ is the correlation coefficient of xi and xi, or 

i l  
As with a 2 in the one-parameter  case, the var iance 

mat r ix  ~ is unknown, but  we can make an es t imate  
a = ( a i j )  of it by  the methods discussed in §§ 4 and 5. 
Assuming this has been done on v degrees of freedom, 
we take as a generalization of the statistic t of § 2, 
the  statistic T given by  

T 2 = ~ ~ a ~ i ( x i - ~ ) ( x ~ - ~ ) ,  (3.2) 
i=1 ]=1 

where a -1 = (a ij) is the inverse mat r ix  to a -  (aij). 
When  n - - 1 ,  T reduces to t, for in this case the  
es t imated variance mat r ix  has a single term s 9, wi th  
inverse 1/s ~', so T 2 =  ( x - ~ ) 2 / s 2 -  - t ~. 

To test  the hypothesis  t ha t  the values xol, xo~, 
• . . ,  xo~, with est imated var iance mat r ix  ao = (ao, ij) 
based on ~ degrees of freedom, found in a par t icular  
exper imenta l  determination,  come from a s tructure 
in which the true values of these parameters  are 
~ol, ~o2, . - . ,  ~on we calculate 

T2o = ~ ~ aio/(xo,-~oi)(xoj-~oj) . (3-3) 
i=1 ]=1 

:From the known distr ibut ion of T 2, the probabi l i ty  
P tha t  T 2 ~  To 2 can be found. If  this  is smal l  we 
reject the hypothesis.  More precisely, the significance 
levels g i v e n i n  § 2 can be used, e.g. if 0-01 > P ~ 0.001, 
we say tha t  the set of values (xol, xo2, . . . ,  xon) differs 
from (~ol, ~o2, . . - ,  ~o~) by  an amount  which is signifi- 
cant. 

Jus t  as the dis t r ibut ion of t tends to normal i ty  as 
-+ 0% so the distr ibut ion of T 2 tends to the Z 9 

dis t r ibut ion with n degrees o f  freedom (for the Z ~ 
distr ibut ion see e.g. Kendal l  (1943) or Wea the rburn  
(1947)). When  r is sufficiently large, i t  is a sufficient 
approximat ion to use the simpler Z 2 dis t r ibut ion in 

place 0f the exact distribution. In rough terms, when 
n = 1 the Z 9 approximat ion is useful for v > 30 (as 
in § 2), and for n = 6 it  is useful for ~ > 60. 

4. T h e  a c c u r a c y  of a t o m i c  coordinates  found b y  
the l eas t - squares  or modif ied differential Fourier  

m e t h o d s  

4.1. Exact  formulae 
Both the modified differential  Fourier  method and 

the least-squares method lead to a set of s imultaneous 
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equations linear in the small parameter refinements 
es~ (Cruickshank, 1952, equations (3.9) and (3.10)), 
e~j denoting a small variation of the j t h  coordinate 
of atom s. These equations may  be written 

~, cri,8~e~ = bri , (4-1) 

where, in the modified differential Fourier method, 

1 2~ , ~[fc] 
Vri's] = -V  a-~. ~ n i  ~ x s ]  s i n  (Or--OQ , 

and 
1 2 z  

b~ = - ~ - - ~ Y ,  h~(IFol-iF~I) sin (0r-c~) ; 
[ ai 3 

and in the least-squares method 

c~,~ = 2 ~xr~ ~xs~ ' 

and 

b~ = 2." w(IFol-IF~l)  ~IF~I 
u ~Xri  " 

In these equations F o and F c are the observed and 
calculated structure factors, hi is the plane index for 
the direction xi, ai a cell side, V the unit cell volume, 
a the phase angle, Or = 2~(~h ix~ i ]a i ) ,  ~ ,  is a sum- 

" i 3 

marion over all observed planes, ~:  a summation 
u 

only over symmetry  independent planes, IFcl is t reated 
in the derivatives as a function of the parameters xsi, 
and w is the weight of each independent plane. 

For either method we may write br~ in the form 

b~ = ~,  ks~,u(If  o, u l - IFc ,  ul) , (4.2) 
u 

thus taking the summation only over symmetry  
independent F's.  

The solutions of (4.1) are 

s, 

where c -x • is an element of the matr ix inverse to cri,s ~. m, 8? 
Using (4.2), this can be written 

= .~, dr~,~([Fo,~i-lF¢,ul) ,  (4.3) 
u 

where 
dri, u = ~ C~iilsi [~si, u • 

Equation (4.3) gives eri as a linear sum over indepen- 
dent AF~'s. 

Accordingly, the variance of eri is 

~(e~i) = 2 :  (dr~ ,~)~(F~)  • (4.4) 
u 

A simplification of (4.4) is possible for the least- 
squares method since by definition Wu = 1/a2(F~). 
To achieve this, we rewrite (4.2) as 

bri = . ~  uri, uw~/2 ([Fo, u l - I F c ,  d )  , 

and (4.3) as- 

eri .~,'~" q"l/9~[Fo, u I - l F c ,  ul) 

where 
0r~,~ = 2; c ~ , ~ .  

s, ] 

Then 

But 

hence 

a ~ ( ~ )  = Z (Sri,~)2wua~(F~) 
u 

= ~ (Sri, ~)~ 
u 

- Z ~  -i -i - (cry, 8j~sj, ~) (cry, ~ t ~ ,  ~) • 
u 8,~ t , k  

~ ' g s ] , u ~ t k ,  u -~ ~ W ~ " " - -  Csj, tk ; 
u u Ox#i 2aX~k 

,.(4.a) 

(4-6) 

= .~  Cr i , s j%, t kC~ i , t k= '~ ' .  (4"7) 
s,~ t , k  

The covariance of eri and e , / is  

coy (eri, esj) = . ~  dri, ~ds], ua2(F~).. :(4-8) 

For least-squares this simplifies to 

coy (eri, esj) = c;~sj • (4.9) 

The essence of the simplification for least squares 
is the step from (4.5) to (4.6). With any but  the weight- 
ing appropriate for t.he standard deviations, we do not 
have wua2(Fu) = 1, The modified differential' ~ourier 
method is equivalent to taking an artificial weighting 
wu oc p~/fi, where pu is the number of planes related by 
symmetry  in each crystallographic form, but, since 
a2(F~) ocf i /pu is not a necessary relation, no corre- 
sponding simplification is possible. For the same reason 
the correctly weighted least-squares equations, or the 
Fourier method with equivalently weighted coeffi- 
cients, le~d to the parameter  estimates having the 
lowest variances. 

The accuracy of coordinates found by least squares, 
using the function 

R~ = Zw"(IFol~-lFc[~) ~, 

or from the corresponding Patterson function, may 
be derived in a similar manner. 

By the central limit theorem (see e.g. Kendall, 1943) 
the probabili ty distribution of errors for an atomic 
coordinate is approximately normal, because of the 
large number of independent F's,  irrespective, within 
rather wide limits, of the distribution laws for the 
individual F's.  

4-2. A p p r o x i m a t e  f o rmu lae  
Just. as the equations for the sri may  often be 

approximately simplified (see Cruickshank, 1952), so 
may  the formulae for the accuracy of the parameters. 
The first simplification is to take an approximate 
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form for the matrix of coefficients c~i,s# This is 
discussed in the paper just referred to, and its conse- 
quence is tha t  the coefficients d~i,u of {4.4) are 
simplified. In particular, if all the peaks are spherical 
and are well resolved without overlapping in an 
orthogonal cell of a centrosymmetrie structure, the 
matrix is diagonal and we have approximately in the 
Fourier method 

{1V_2 4~9 ,, ~l(~2-~'21'\VXil (4"10) a~(~) = --:F- Z ),~, ua2(Fu) j !  , 
a~ 

where ( ~ / ~ x ~ )  is the second derivative of the elec- 
tron density evaluated at  the position of atom r, 
and ~, u is a sum of trigonometric terms depending 
on the plane u and the position of atom r (Cruiekshank, 
1949a), the numerator being the variance of the slope 
of the density. 

The second simplification is tha t  it is then often 
sufficient to replace X~,~ by a term which does not 
depend on the exact position of atom r, though it 
may depend on whether r is in a general or a special 
position in the cell. The various approximations which 
can be made in this way have been discussed by 
Cruickshank & Rollett (1953); some less general re- 
marks about this were made earlier by Cruickshank 
(1949a, b). In the simplest case of an atom in a general 
position in many centrosymmetric space groups, 
(4.1.0) has the approximate form 

{V 4~r2 h~a2(F)~/(~2-~l ~ (4"11) (r2(~"i) = a----~ ~a ) I \ex , /  " 

4.3. Estimation of a(Fu) 
To estimate coordinate s tandard deviations by the 

preceding formulae, it is first necessary to estimate 
the a(F~). Coordinates found by the least-squares or 
modified differential Fourier methods (or their ap- 
propriate approximations) may  be in error owing to: 

(a) experimental errors in the IFol's; 
(b) imperfections of the molecular model used for 

the F~'s; 
(c) errors in the unit cell size; 
(d) computational approximation errors. 

We will not discuss the last two sources of error, which 
in any case do not enter through the preceding for- 
mulae. 

Comparison of (4.3) and (4.4) suggests tha t  a simple 

way of estimating (a) and (b) together is to take 
IIFo,~I-]F¢,u]I as an estimate of a(F,D, F~,u being 
the final value of the calculated structure factor. This 
procedure certainly allows for the errors in the ]Fol'S, 
and makes some sort of allowance for the imperfections 
of the Fc's, and has the incidental merit of being easy 
to apply. I t  is open to criticism tha t  it treats the errors 
(b) as random, whereas they  are systematic, the errors 
in the different $'c, u being correlated. The objection 
is valid in principle, but  the method may be used 
because of the necessity of making some estimate 

of (b). The check against its improper application is 
tha t  the difference map should show no strong features 
at tr ibutable to the calculated model. Often this is so, 
and the method then gives a fairly satisfactory estimate 
of the errors. 

Sometimes it is of interest to find the errors produced 
by the errors in the IFo] values only. For this purpose 
the random errors of each [Fol may be estimated by 
the agreement between several independent observa- 
tions, or, if Geiger-eounter techniques are being used, 
from the expected ,fluctuations in the number of 
counts. Unless crystals of different sizes are used, this 
will not take account of absorption and extinction 
errors. 

These remarks have a bearing on the choice of the 
weights w in the least-squares method. The weights 
are sometimes estimated from a study of the ex- 
perimental errors in the IFol's, which, of course, can 
be made before the refinement starts. With this choice 
of w's, (4.7) will estimate only the parameter errors 
due to the experimental errors in the IFol's. To include 
the effects of the imperfections of the calculated model, 
either (4.4) must be used with estimated a(Fu)'s not 
related to the w's, or another set of w's is necessary. 
This new set cannot be properly estimated until the 
refinement is nearly complete, as it must come from 
a s tudy of the residuals IFo, u-Fc,  ~1. Alternatively, 
sometimes only the relative weights are determined 
from a study of the experimental errors in the IFoI'S, 
and at the end of the analysis the estimated variance 
of the observation of unit weight is taken as 

s 9. = (.~y, wlFo, u-.Fc, u I2) / (m-n) ,  (4.12) 
U 

where m is the number of independent observations 
and n is the number of parameters determined. This 
method, again, may be open to the objection tha t  the 
relative weighting is not appropriate to the total  
errors. 

The factor ( ~ n - n ) =  v in place of m in (4-12) is 
statistically correct, and allows for the reduction of the 
residuals as the number of parameters is increased. 
Strictly, an effect of this sort ought to be allowed for 
in the estimation of the errors of the Fourier method, 
but  provided ( (m-n) /m)½ is close to unity, the previous 
discussion will be satisfactory. 

5. The accuracy of molecular parameters 
The molecular parameters are functions of the atomic 
parameters. Their standard deviations may  be ob- 
tained either by expressing them directly in terms of 
the ~(F)'s, or in terms of the variances and covarianees 
of the atomic parameters. Thus if a molecular para- 
meter m = ~ lix i is a linear function of a number of 

i 

atomic parameters xi, 

a2(m) = .,~, .,~, lil i coy (x i, xj). (5.1) 
i i 
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In three-dimensional work the latter often takes a very 
simple form, but for unresolved bond lengths in two- 
dimensional projections it is sometimes more con- 
venient to express the bond-length errors directly in 
terms of the a(F)'s. 

The simplification for three-dimensional resolved 
structures is that  the covariances between different 
atoms are approximately zero (except possibly for 
non-centrosymmetric structures with heavy atoms). 
On this assumption we now give a short list of the 
variances and covariances of some molecular para- 
meters in terms of the variances of the atomic para- 
meters. 

If 1 is the bond length between two independent 
atoms, having variances aS(a) and aS(b) in the direction 
of the bond 

a2(1) = a2(a) + a2(b) . (5.2) 

If the bond is across a centre of symmetry 

aS(l) -- 4ag(a) . (5.3) 

If fl is the angle formed at B between two bonds 
A B and BC 

( 1 )  a2(c) as(# ) aS(A) 1 2 cos/~ + + 
= A B  - - - ~ + a ~ ( B )  A-B s A B . B ~  ~ B C  ~ '  

(5.4) 

where aS(A) and as(C) are the variances of A and C 
in the directions at right angles to A B  and B C  re- 
spectively, and aS(B) is the variance of B in the 
direction of the centre of the circle passing through 
A, B and C. If A and B are related by a centre of 
symmetry, a2(fl) is given by replacing A by the centre 
of symmetry 0, which has no error, and using the half 
length OA in place of A B .  

If two bonds have no common atoms their con- 
variance, aij, will be zero. 

If 1 i and lj are the lengths of two bonds A B  and BC, 
with common atom B, 

aij = coy (l~, 1i) = aS(B) cos fl, (5.5) 

where fl is the angle, and aS(B) is the variance of B 
in the direction of the tangent to the circle through 
A, B and C. If A and B are related by a centre of 
symmetry 

coy (li, lj) -- 2a2(B) cos ft. (5.6) 

The covariance between the length A B  and the angle 
fl is 

aS(B) sin fl 
cov (AB,  fl) = - B C  ' (5.7) 

where aS(B) is the variance of B in the direction of A B .  
If either A and B or B and C are related by a centre 
of symmetry 

2aS(B) sin fl 
coy (AB,  fl) = - B C  (5.8) 

Sometimes the assumed symmetry of a molecule 
may be higher than its crystallographic symmetry; 

the different crystallographic values may then be  
averaged to give the molecular parameters. As an 
example of the variance of a molecular parameter 
found in this way, suppose that  there is no crystallo- 
graphic relation between two bonds A B  and BC, 
having a common atom B, but that  the molecular 
symmetry assumes the two bonds equal. The variance 
o~ the averaged bond length is then 

ag(1) = ¼(aS(A)÷4a2(B) cos 2 ½fl+a2(C)) , (5.9) 

where a2(A) is the variance of A in the direction 
A B ,  a2(B) is the variance of B in the direction bi- 
secting the angle fl, and a~(C) is the variance of C 
in the direction CB, and no correlation has been 
assumed in the errors of A, B and C. 

6. Applications to naphthalene and anthracene 

Very complete experimental redeterminations of the 
crystal and molecular structures of naphthalene (Abra- 
hams, Robertson & White, 1949a, b) 

and anthracene (Mathieson, Robertson & Sinclair, 
1950; Sinclair, Robertson & Mathieson, 1950) 

have been described recently. Ahmed & Cruickshank 
(1952) have made corrections to these results for finite- 
series effects, and have estimated the bond-length 
standard deviations. They found that  the chemically 
equivalent but crystallographically non-equivalent 
bond lengths all agreed within the estimated standard 
deviations (e.s.d's), and hence derived weighted mean 
estimates of the chemically equivalent bonds. These 
are given in Tables 1 and 2, together with their 
e.s.d's. 

Theoretical bond lengths have been determined by 
Coulson, Daudel & Robertson (1951) by the method 
of molecular orbitals. These also are given in Tables 1 
and 2, together with the differences between the 

Table 1. Averaged bond lengths in naphthalene 

Experi- Theoret- 
Bond mental E.s.d. i ca l  Differe~ace ]tol 

AB 1.365 A 0.006/k 1.384/~ --0.019/~ 3.17 
BC 1.425 0.005 1.416 ~0-009 1.80 
AE" 1.404 0.009 1.406 -- 0.002 0.22 
CC" 1.393 0.010 1.424 --0.031 3-10 
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Bond 
AB 
BC 
CD 
AG" 
CE" 

Table 2. Averaged bond lengths in anthracene a2(A) -- ae(E) -- 38.8 x 10 -6 A 2, 

Experi- Theoret- a2(B) = q2(D) = 32.6 × 10 -6 A 2, 
mental E.s.d. ical Difference ]to] a2(C) -~ 24"1 × 10 -6 A 2. 
1.371 A 0.006 h 1.382 A --0.011 k 1.83 
1-424 0.005 1.420 +0 .004  0.80 This matrix was inverted and 
1.396 0-004 1.406 --0.010 2.50 
1.408 0-010 1-410 --0.002 0.20 4 4 
1,436 0.007 1.430 +0.006 0.86 T2o ---: ~ ~, (~iaiJ(~j 

i=1 i=1 

experimental and theoretical results, and the modulii 
of the ratios, Itol, of these differences to the e.s.d's. 

The e.s.d's may  be regarded as moderately accurate, 
since there were several hundred independent ex- 
perimental observations for each structure and 
][Fol-IFc]I was used as estimate of ~(F). Accordingly, 
significance tests for the comparison of experiment and 
theory may  be based on the  ~a ~'stribution, or, for one 
parameter,  on the normal distribution. 

The comparisons between theory and experiment 
will be made first bond by bond, and then for all the 
bond lengths of each molecule taken together. The 
latter comparisons show clearly tha t  the theory is 
considerably better for anthracene than for naphtha- 
lene. 

:For naphthalene the differences between experiment 
and theory on the bonds BC and AE'  are not signifi- 
cant. :For the bond AB,  Ito] = 3-17, and for CC', 
Itol = 3.1; for both bonds 0.01 > P > 0.001, and so 
the differences are significant. For  anthracene the 
differences for AB,  BC, AG' and CE' are not signifi- 
cant. :For CD, Itol = 2.5, with 0.05 > P > 0.01, so 
this difference is possibly significant. These compari- 
sons show tha t  the theory is more satisfactory for 
anthracene than for naphthalene, but give no overall 
figure of merit  for either molecule. To obtain this, we 
now apply the multivariate significance tests of § 3. 

The e.s.d's of the three coordinates of a given atom 
vary  s]ightly with direction, and the bond length 
e.s.d's of Tables 1 and 2 were calculated allowing for 
this. To simplify the calculation of the covariances 
between the averaged bond lengths, it was assumed 
that  the errors for a given atom were independent of 
direction. On this assumption the elements of the 
variance matr ix  of the averaged bond lengths of 
naphthalene in terms of the variances of the atomic 
coordinates are, taking fl = 120 °, 

a2(AB) = {(a~(A)+a2(B)+a2(D)+@(E)), 

~z(BC) - ¼(aZ(B) ÷ aZ(D) ÷ 4~(  C) e0s~½fl) , 
a2(AE ') = a2(A)+~2(E), 
a2(CC ') = 4a2(C) , 

coy (AB, BC) = ¼(a2(B)+a2(D)) cos fl ,  
coy (AB, A E ' ) =  ½(a2(A)+a2(E)) cos fl ,  

coy (Be, CC') = -½(4a2(C) cos ½fl) = -2~e(c)  cos ½/~, 
coy (AB, CC') = coy (BC, AE')  = coy (AE', CC') = O . 

The variance matrix, ai# was calculated taking the 
atomic variances as 

and 

was calculated, the 5's being the differences between 
the experimental and theoretical bond lengths. 

The elements for the variance matrix for anthracene 
are similar, though 

a2(CE') = (~2(C) + ~2(E), 
coy (BC, CE') = coy (CD, CE') 

= ½(~(C)+~2(E)) cos p. 

The atomic variances used were 

a2(A) = a2(G) = 39.7 × 10 -6 A 2, 
a2(B) = a~(F) --- 28.0 x 10 -6 ~2, 

a2(C) = a2(E) = 20.6 x 10 -6 A 2, and 
a2(D) = 21-6 x 10 -6 A e. 

For naphthalene T 2 = 23-15, corresponding, for 
four degrees of freedom, approximately to P = 0.0001. 
:For anthracene T 2 = 11.39, corresponding, for five 
degrees of freedom, approximately to P = 0-05. Thus 
treating the molecules as wholes the difference be- 
tween theory and experiment is highly significant for 
naphthalene, but  only possibly significant for anthra- 
cene. We see tha t  the multivariate significance tests 
have clarified the comparison between theory and 
experiment, and have demonstrated tha t  the theory 
is much more satisfactory for anthracene than for 
naphthalene. 

I t  is true tha t  these conclusions are indicated by the 
r.m.s, differences between experiment and theory, 
0.019 A for naphthalene and 0-007 A for anthracene, 
and by the ratio of these to the bond length e.s.d's. 
But  it is only by evaluating T 2 tha t  the correlation of 
errors between the different bond lengths can be 
properly taken into account, and the comparisons 
made on a uniform basis. 

These comparisons have been made to test the 
hypothesis tha t  the theoretical values are the true 
values, and have ignored the admitted imperfections 
of the theory (Coulson et al., 1951), which are estimated 

to produce corrections up to 0.015 A per bond. The 
value of the comparisons is tha t  they show that  it is 
hardly necessary to postulate any errors in the theory 
for anthracene but tha t  important  errors occur in the 
theory for naphthalene. One noticeable feature is tha t  
the mean theoretical bond lengths are too long for both 
molecules. For  naphthalene the mean experimental 
bond length (weighted according to the number of 
bonds of each kind) is 1-396 A, and the mean theoreti- 
ca] is 1.403 A. For anthracene the means are 1-403 A 
and 1.407 .~. Using the previous coordinate variances, 
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and  allowing for the correlations between bond lengths, 
the  e.s.d's of the mean  bond lengths are 0.0028 A for 
naph tha lene  and 0.0021 /~ for anthracene.  The differ- 
ence of the means  is possibly significant  for naphtha-  
lene, but,  even if the theoretical mean  is readjusted,  
i t  is still necessary to postulate theoretical  errors for 
this  molecule up to about  0.020 A to obta in  sat isfactory 
agreement  between theory  and experiment .  
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Approximate formulae are given for the electron-density and slope errors at special positions in 
any space group. An example shows that  the errors at special positions can be several times those 
at general positions. 

D e n s i t y  e r r o r s  

The electron densi ty  Q(x, y, z) is given by  the triple 
:Fourier series of s tructure factors, F(hkl), as 

1 
9(x, y, z) = ~ a/~ IF I cos {2ze(hx/a+ky/b+lz/c)-o~} 

1 
= V ~ a  [FI cos ( 0 - a ) ,  s a y .  (1) 

The F ' s  m a y  be related by  symmet ry ,  and in terms 
of the independent  F ' s  we m a y  write (1) as 

1 
e = ~ 2: [FI 2 cos ( 0 - s ) ,  (2) 

indep, form 

where the inner summat ion  is over all planes of the  
same crystal lographic form. 

If  each independent  IF[ has  a s tandard  deviat ion 
a(F) ,  the s tandard  deviat ion of the error in the elec- 
t ron density,  by  the law for the combinat ion of errors, 
is 

a(Q) l_~ .~, aP(F)[ ~, cos (O-~)]2}½ = . (3) 
V ~indep. form 

Equat ion  (3) shows tha t  the error varies from point  
to point  in the  uni t  cell. However, if there are a large 
number  of terms in the summation,  the error is near ly  
constant  over large regions of the cell, as (3) is the 
sum of squares of cosine terms. These approximate  
values of the error depend on whether  the position 
considered is a general one (x, y, z), or a special one, 
such as (0, 0, z) or (x, ~, z), and on the space group. 

:For the type  of position considered let those planes 
in each form with the same Jcos ( 0 - a ) l  be said to 
consti tute a sub-form. Let 

m = 2 cos ( 0 - a ) / l c o s  ( 0 - ~ ) 1  , (4) 
sub-form 

so tha t  if all  the  planes in a sub-form have  the same 
cos ( 0 - s ) ,  m is just  the number  of planes in tha t  sub- 
form. Let  U be the r.m.s, value of cos ( 0 - a )  in a 
sub-form for positions of the given type ;  then  ap- 
proximate ly  

I{ ..~ [~Tma(F)]2}½ 
~(~) = V ~nsub~o~ , (5) 

since, on squaring the summat ion  for each form in (3), 
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